Compact Hypersurfaces in a Unit Sphere with Infinite Fundamental Group

نویسندگان

  • Qing-Ming Cheng
  • QING-MING CHENG
چکیده

It is our purpose to study curvature structures of compact hypersurfaces in the unit sphere S(1). We proved that the Riemannian product S( √ 1 − c2) ×Sn−1(c) is the only compact hypersurfaces in S(1) with infinite fundamental group, which satisfy r ≥ n−2 n−1 and S ≤ (n − 1)n(r−1)+2 n−2 + n−2 n(r−1)+2 , where n(n − 1)r is the scalar curvature of hypersurfaces and c = n−2 nr . In particular, we obtained that the Riemannian product S( √ 1 − c2) × Sn−1(c) is the only compact hypersurfaces with infinite fundamental group in S(1) if the sectional curvatures are nonnegative.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Weingarten hypersurfaces in a unit sphere

In this paper, by modifying Cheng-Yau$'$s technique to complete hypersurfaces in $S^{n+1}(1)$, we prove a rigidity theorem under the hypothesis of the mean curvature and the normalized scalar curvature being linearly related which improve the result of [H. Li, Hypersurfaces with constant scalar curvature in space forms, {em Math. Ann.} {305} (1996), 665--672].  

متن کامل

Clifford Hypersurfaces in a Unit Sphere

Let M be a compact Minimal hypersurface of the unit sphere S. In this paper we use a constant vector field on R to characterize the Clifford hypersurfaces S (√ l n ) × S mn ) , l + m = n, in S. We also study compact minimal Einstein hypersurfaces of dimension greater than two in the unit sphere and obtain a lower bound for first nonzero eigenvalue λ1 of its Laplacian operator.

متن کامل

PARA-BLASCHKE ISOPARAMETRIC HYPERSURFACES IN THE UNIT SPHERE Sn+1(1) (II)

Let D = A + λB be the para-Blaschke tensor of the immersion x, where λ is a constant, A and B are the Blaschke tensor and the Möbius second fundamental form of x. A hypersurface x : M 7→ S(1) in the unit sphere S(1) without umbilical points is called a para-Blaschke isoparametric hypersurface if the Möbius form Φ vanishes identically and all of its para-Blaschke eigenvalues are constants. In [1...

متن کامل

Extrinsic Radius Pinching for Hypersurfaces of Space Forms

We prove some pinching results for the extrinsic radius of compact hypersurfaces in space forms. In the hyperbolic space, we show that if the volume of M is 1, then there exists a constant C depending on the dimension of M and the L-norm of the second fundamental form B such that the pinching condition tanh(R) < 1 ||H||∞ + C (where H is the mean curvature) implies that M is diffeomorphic to an ...

متن کامل

Mean Value Representations and Curvatures of Compact Convex Hypersurfaces

It is shown that the kernels for mean value representations of points in R in terms of the integrals over piecewise smooth hypersurfaces are divergence free vector fields defined by homogeneous functions of degree −(n+1), whose restrictions to the unit sphere are positive and orthogonal to the first harmonics. By Minkowski problem, such a function is the reciprocal of the composition of the Gau...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003